Seriously. The Devil Made me do It!

good vs evilJust as eternal as the cosmic struggle between good and evil is the challenge between our two natures. Religion aside, we have two natures, the part of us that:

  • thinks things through; make good or ethical decisions a.k.a. our angelic nature
  • react immediately; make quick but often wrong decisions a.k.a. our devil nature

Guess God left a bug in our brains so that it emphasizes fast decisions over good / ethical decisions.

Quite often we make sub-optimal or ethically ambiguous decisions under pressure

You decide…

SteamingPileSituation: Your manager comes to you and says that something urgent needs to be fixed right away. Turns out the steaming pile of @#$%$ that you inherited from Bob is malfunctioning again.

Of course Bob created the mess and then conveniently left the company; in fact, the code is so bad that the work-arounds have work-arounds.

Bite the bullet, start re-factoring the program when things goes wrong.  It will take more time up front, but over time the program will become stable.

Find another fast workaround and defer the problem to the future.  Find a good reason why the junior member of the team should inherit this problem.

MultiplePathsSituation: You’ve got a challenging section of code to write and not much time to write it.

Get away from the computer, think things through.  Get input from your peers, maybe they have seen this problem before. Then plan the pathways out and write the code once cleanly. Taking time to plan seems counter intuitive, but it will save time.

Naw, just sit at the keyboard and bang it out already.  How difficult can it be?

BlameSituation: The project is late and you know that your piece is behind schedule.  However, you also know that several other pieces are late as well.

Admit that you are late and that the project can’t finish by the deadline.  Give the project manager and senior managers a chance to make a course correction.

Say that you are on schedule but you are not sure that other people (be vague here) will have their pieces ready on time and it could cause you to become late.

Measurement, smallSituation: You have been asked to estimate how long a critical project will take.  You are only been given a short time to come up with the estimate.

Tell the project manager that getting a proper estimate takes longer than a few hours. Without proper estimates the project is likely to be severely underestimated and this will come back to bite you and the project manager in the @$$.

Tell the project manager exactly the date that senior management wants the project to be finished by.  You know this is what they want to hear, why deal with the problem now? This will become the project manager’s problem when the project is late.

The statistics show that we often don’t listen to our better (angelic?) natures very often. So when push comes to shove and you have to make a sub-optimal or less than ethical decision, just remember:

The devil made you do it!

Run into other common situations, email me

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

Don’t be a Slave to Your Tools

Abstract SlaveDevelopers attach quickly to tools because they are concrete and have well defined behavior.  It is easier to learn a tool than to learn good practices or methodology.

Tools only assist in solving problems, they can’t solve the problem by themselves. A developer who understands the problem can use tools to increase productivity and quality.

Poor developers don’t invest the time or effort to understand how to code properly and avoid defects.  They spend their time learning how to use tools without understanding the purpose of the tool or how to use it effectively.

To some degree, this is partially the fault of the tool vendors.  The tool vendors perceive an opportunity to make $$$$$ based on providing support for a common problems, such as:

  • defect trackers to help you manage defect tracking
  • version control systems to manage source code changes
  • tools to support Agile development (Version One, JIRA)
  • debuggers to help you find defects

There are many tools out there, but let’s just go through this list and point out where developers and organizations get challenged.  Note, all statistics below are derived from over 15,000 projects over 40 years.1

Defect Trackers

Believe it or not, some organizations still don’t have defect tracking software. I’ve run into a couple of these companies and you would not believe why…

Inadequate defect tracking methods: productivity -15%, quality -21%

So we are pretty much all in agreement that we need to have defect tracking; we all know that the ability to manage more than a handful of defects is impossible without some kind of system.

Automated defect tracking tools: productivity +18%, quality +26%

The problem is that developers fight over which is the best defect tracking system. The real problem is that almost every defect tracking system is poorly set-up, leading to poor results. Virtually every defect tracking system when configured properly will yield tremendous benefits. The most common pitfalls are:

  • Introducing irrelevant attributes into the defect lifecycle status, i.e. creation of statuses like deferred, won’t fix, or functions as designed
  • Not being able to figure out if something is fixed or not
  • Not understanding who is responsible for addressing a defect

The tool vendors are happy to continue to provide new versions of defect trackers. However, using a defect tracker effectively has more to do with how the tool is used rather than which tool is selected.

One of the most fundamental issues that organizations wrestle with is what is a defect?  A defect only exists if the code does not behave according to specifications. But what if there are no specifications or the specifications are bad?  See It’s not a bug, it’s… for more information.

Smart organizations understand that the way in which the defect tracker is used will make the biggest difference.  Discover how to get more out of you defect tracking system in Bug Tracker Hell and How to Get Out.

Another common problem is that organizations try to manage enhancements and requirements in the defect tracking system.  After all whether it is a requirement or a defect it will lead to a code change, so why not put all the information into the defect tracker?  Learn why managing requirements and enhancements in the defect tracking system is foolish in Don’t manage enhancements in the bug tracker.

Version Control Systems

Like defect tracking systems most developers have learned that version control is a necessary hygiene procedure.  If you don’t have one then you are likely to catch a pretty serious disease (and at the least convenient time)

Inadequate change control: productivity -11%, quality -16%

Virtually all developers dislike version control systems and are quite vocal about what they can’t do with their version control system.  If you are the unfortunate person who made the final decision on which version control system is used just understand that their are hordes of developers out their cursing you behind your back.

Version control is simply chapter 1 of the story.  Understanding how to chunk code effectively, integrate with continuous build technology, and making sure that the defects in the defect tracker refers to the correct version are just as important as the choice of version control system.

Tools to support Agile

Sorry Version One and JIRA, the simple truth is that using an Agile tool does not make you agile, see this.

These tools are most effective when you actually understand Agile development. Enough said.


I have written extensively about why debuggers are not the best tools to track down defects.  So I’ll try a different approach here.

One of the most enduring sets of ratios in software engineering has been 1:10:100.  That is, if the cost of tracking down a defect pre-test (i.e. before QA) is 1, then it will cost 10x if the defect is found by QA, and 100x if the defect is discovered in deployment by your customers.

Most debuggers are invoked when the cost function is in the 10x or 100x part of the process.  As stated before, it is not that I do not believe in debuggers — I simply believe in using pre-test defect removal strategies because they cost less and lead to higher code quality.

Pre-test defect removal strategies include:

  • Planning code, i.e. PSP
  • Test driven development, TDD
  • Design by Contract (DbC)
  • Code inspections
  • Pair programming for complex sections of code

You can find more information about this in:

Seldom Used Tools

Tools that can make a big difference but many developers don’t use them:

Automated static analysis: productivity +21%, quality +31%

Automated unit testing: productivity +17%, quality +24%

Automated unit testing generally involves using test driven development (TDD) or data driven development together with continual build technology.

Automated sizing in function points: productivity +17%, quality +24%

Automated quality and risk prediction: productivity +16%, quality +23%

Automated test coverage analysis: productivity +15%, quality +21%

Automated deployment support: productivity +15%, quality +20%

Automated cyclomatic complexity computation: productivity +15%, quality +20%

Important Techniques with No Tools

There are a number of techniques available in software development that tool vendors have not found a way to monetize on. These techniques tend to be overlooked by most developers, even though they can make a huge difference in productivity and quality.

The Personal Software Process and Team Software Process were developed by Watts Humphrey, one of the pioneers of building quality software.

Personal software process: productivity +21%, quality +31%2

Team software process: productivity +21%, quality +31%3

The importance of inspections is covered in:

Code inspections: productivity +21%, quality +31%4

Requirement inspections: productivity +18%, quality +27%4

Formal test plans: productivity +17%, quality +24%

Function point analysis (IFPUG): productivity +16%, quality +22%


There is definitely a large set of developers that assume that using a tool makes them competent.

The reality is that learning a tool without learning the principles that underly the problem you are solving is like assuming you can beat Michael Jordan at basketball just because you have great running shoes.

Learning tools is not a substitute for learning how do do something competently. Competent developers are continually learning about techniques that lead to higher productivity and quality, whether or not that technique is supported by a tool.


VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Debuggers are Crutches

Woman on CrutchesDefects are common, but they are not not necessary.  They find their way into code because:

Defects are only corrected by understanding pathways and debuggers are not the best way to do this.

Debuggers are commonly used by developer’s to understand a problem, but just because they are common does not make them the best way to find defects.  I’m not advocating a return to “the good old days” but there was a time when we did not have debuggers and we managed to debug programs.

Avoid Defects

Personal Software ProcessThe absolute best way to remove defects is simply not to create them in the first place. You can be skeptical, but things like  the Personal Software Process (PSP) have been used practically to prevent 1 of every 2 defects from getting into your code.  Over thousands of projects:

The Personal Software Process increases productivity by 21% and increases code quality by 31%

A study conducted by NIST in 2002 reports that software bugs cost the U.S. economy $59.5 billion annually. This huge waste could be cut in half if all developers focused on not creating defects in the first place.

Not only does the PSP focus on code planning, it also makes developers aware of how many defects they actually create.  Here are two graphs that show the same group of developers and their defect injection rates before and after PSP training.

Before PSP training After PSP training

Finding Defects

Unskilled professionalUsing a debugger to understand the source of a defect is definitely one way.  But if it is the best way then why do poor developers spend 25 times more time in the debugger than a a good developer? (see No Experience Required!)

That means that poor developers spend a week in the debugger for every 2 hours that good developer does.

No one is saying that debuggers do not have their uses.  However, a debugger is a tool and is only as good as the person using it.  Focus on tools obscures lack of skill (see Agile Tools do NOT make you Agile)

If you are only using a debugger to understand defects then you will be able to remove a maximum of about 85% of all defects, i.e. 1 in 7 defects will always be present in your code.

Orkin manWould it surprise you to learn that their are organizations that achieve 97% defect removal?  Software inspections take the approach of looking for all defects in code and getting rid of them.

Learn more about software inspections and why they work here:

Software inspections increase productivity by 21% and increases code quality by 31%

Even better, people trained in software inspections tend to inject fewer defects into code. When you become adept at parsing code for defects then you become much more aware of how defects get into code in the first place.

But interestingly enough, not only will developers inject fewer defects into code and achieve defect removal rates of up to 97%, in addition:

Every hour spent in code inspections reduces formal QA by 4 hours


As stated above, there are times where a skilled professional will use a debugger correctly.  However, if you are truly interested in being a software professional then:

  • You will learn how to plan and think through code before using the keyboard
  • You will learn and execute software inspections
  • You will learn techniques like PSP which lead to you injecting fewer defects into the code

You are using a debugger as a crutch if it is your primary tool to reduce and remove defects.

Related Articles

Want to see more sacred cows get tipped? Check out:

Make no mistake, I am the biggest “Loser” of them all.  I believe that I have made every mistake in the book at least once 🙂


VN:F [1.9.22_1171]
Rating: 2.5/5 (2 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

Who should set defect priority?

ControlFreakSurprisingly, defect priority should not be set by QA.  QA are generally the owners of the defect tracking system and control it, but this is one attribute that they should not control.  The defect tracker is a shared resource between QA, engineering, engineering management, and product mangement and is a coordinating mechanism for all these parties.

Commonly people mix up priority and severity, for example, there may be a severe defect that causes the software either not to install or to cease functioning.

Car won't startIt is common for new releases to have various installation problems when it initially gets to QA. This blocks QA so they mark the defects with a high severity and high priority.  This issue has a high severity and needs to be addressed right away, but remember bug tracking systems are append only — once this defect gets into the system, it will never get out.  This kind of issue should be escalated to the engineers and engineering management because it makes little sense to clog the defect tracking system with it.

Now there may be intermittent issues that cause the software to fail and you may assume that this defect would be high priority, but if this defect occurs very rarely and would cost too much to fix then this defect may be a low priority.  Once again the priority of an intermittent severe issue can not be determined by QA.

Similarly, there may be many cosmetic or minor defects where fixing them might make a huge difference in the user experience and reduce support calls.  Even though these defects are minor, they may be easy to fix and save you serious money.  Once again, this can not be decided by QA.

Therefore, QA should reserve the right to set the initial severity, and may have an internal field for QA priority, but the priority of a defect should be determined by a product manager (PM) who has a more complete understanding of the overall context of the product.  The priority of a defect is a business issue, not an engineering or QA issue.

Ideally, the product manger will set the priority of a defect during a defect triage session where representatives from engineering, engineering management, and QA are present. As you go through each new defect each person can present their logic for what the priority should be.  The PM should then set the priority defect and assign the release it should be fixed in (i.e. this release, minor release, major release, won’t fix).  Ideally there are extra fields in the defect record for both QA and development to put their priority beliefs.

It is important that the status of a defect not include any of the following or your defect tracker will go to hell (see Bug Tracker Hell and How to Get Out):

  • Priority
  • Severity
  • Fix version

Big documentIt is very hard to generate meaningful reports when these attributes creep into the defect status.  You know that this has happened if you have a multi-page training manual for entering defects into the system.  Some of the statuses that make sense initially but turn the defect system into a nightmare are:

  • FAD (functions as designed)
  • WontFix
  • NextVersion
  • CantReproduce

Of course, if you don’t have regular bug triage sessions with all the parties mentioned above then you are probably sand-bagged in fire-fighting.

Other articles:


VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Enhancements don’t belong in the bug tracker

Not my faultAs development progresses we inevitably run into functionality gaps that are either deemed as enhancements.

These issues often get captured by QA in the bug tracker and assigned to a developer.

Enhancements should not be managed from the bug tracker

The life cycle of a defect and the life-cycle of a enhancement are two entirely different things.  A defect is a difference between a stated requirement and the code. If there is no documentation there is no code defect (see It’s not a bug, it’s…) — in fact, most enhancements will eventually be coded by some developer; they just should not be managed from the bug tracker.

Defect Life-cycleDefectLifecycle

The defect life-cycle is well known:

  • Defect is identified as a departure from the requirements
  • Defect is assigned to a developer
  • Defect is corrected
  • Correct is verified
    • If not corrected re-open and re-assign to developer
  • The defect is closed

This is the incorrect way to manage enhancements.  When a functionality gap is determined by QA and it is not covered by the requirements then we have an issue.  It is rarely the case that the issue can be resolved by the developer.

Enhancement Life-cycle

If enhancements are assigned to a developer then they are likely to try to resolve the issue. The problem is that “enhancements” determined at the QA level may be phantom problems caused by either:

  1. Insufficient requirements
  2. Correct requirements but incorrect test plans

Enhancements may or may not become code changes.  Even when enhancements turn into code change requests they will generally not be implemented as the developer or QA think they should be implemented.

Enhancements are really requirement defects. Enhancements should be logged as such in the bug tracker and assigned to the person in charge of requirements (business analyst or product manager).  Those individuals should be responsible to track down how these issues should be handled.

If the requirements are correct and the test plans are defective then it should be logged as a test defect.  This is tricky because QA often controls the bug tracker and will not log errors that they have made.

At a minimum, the implementation of requirements and test defects can do several positive things for you:

  1. It removes the responsibility to find a solution from development.
  2. It makes it clear how many defects are in the requirements or test plans.
  3. It reduces stress; no developer wants to be blamed for an issue that is not his.
  4. Many enhancements call for updated project plans and pushing back the deadline.

Put Responsibility Where it Belongs

The creation of requirements and test defects in the bug tracker goes a long way to cleaning up the bug tracker.  In fact, requirements and test defects represent about 25% of defects in most systems (see Bug Tracker Hell and How to Get Out!).  The percentages break down as follows:

  • Requirements defects: 9.58%
  • Testing defects: 15.42%

The creation of requirement and test defects in the bug-tracker alleviate pressure on the engineering department and redirect it  to either the product manager or QA. Eventually enough data will accumulate in the bug-tracker to get management’s attention.

At a minimum, these categories should help reduce the amount of fire-fighting in late projects (Root cause of ‘Fire-Fighting’ in Software Projects)

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

It’s not a bug, it’s…

When does a bug become a bug?
Who decides that it is a bug?

Caution, BugHow many legs does a lamb have if I say the tail is a leg?  The answer is 4, just because I say the tail is a leg does not make it a leg!

Bugs should be obvious, but we say It’s not a bug, it’s a feature because often it isn’t obvious.  Watson Humphrey felt that we should use the term defect and not bug because most people don’t take bugs seriously, so let’s use the term defect instead.

So when does a defect become a defect?

  • When quality assurance tells you that you have a defect?
  • When product management says that it is a defect?
  • When the customer says that it is a defect?

The answer is: none of the above.

Now it might turn out that there is a problem and that code needs to change, but a defect only exists if:

code behaves differently than the requirements specification

This is important because most systems are under specified (if they are specified at all) and so when code misbehaves it is only a defect if the code behavior differs from the specification.  We call defects undocumented features because we know that the problem is that the requirements were never written.

Incomplete and Inconsistent Requirements

Many organizations do not create sufficiently complete requirements before starting development, either because they don’t know how to capture requirements properly or because they don’t have resources capable of capturing complete requirements. Incomplete (and inconsistent) requirements and unrealistic deadlines often force developers into making decisions about how to implement features.  The end result is that developers are regularly told that they have defects in their code.

While this process is common, it is destructive.  When requirements are under specified and inconsistent developers end up needing to perform serious rework. The rework will can require dramatic changes that will impact the architecture of the code.

The time required to find a work around (if it is possible) is rarely included in the project plan. Complicating matters is that the organizations that are reluctant to spend time creating requirements also tend to underestimate their projects.  This puts tremendous pressure on the engineering department to deliver; this promotes the 5 worst practices in software development (see Stop It! No… really stop it.)

Only 54% of Issues are Resolved by Engineers

The attitude that all defects must be resolved by the engineering department is severely misguided.  Analysis by Capers Jones of over 18,000+ projects shows that only about 54% of all defects can be resolved by the engineers! (only the 3 highlighted rows below)

Defect Role Category Frequency Role
Requirements defect 9.58% BA/Product Management
Architecture or design defect 14.58% Architect
Code defect 16.67% Developer
Testing defect 15.42% Quality Assurance
Documentation defect 6.25% Technical Writer
Database defect 22.92% Data base administrator
Website defect 14.58% Operations/Webmaster

This means that precious time will be wasted assigning issues to developers that they can not resolve.  The time necessary to redirect the issue to the correct person is a major contributing factor to fire-fighting

Getting Control of the  Defect Process

For most organizations fixing the defect process involves understanding and categorizing defects correctly.  Organizations that are not tracking the different sources of defects probably have a bug tracker that has gone to hell.  Here is how you can fix that problem, see Bug Tracker Hell and How To Get Out!

At a minimum you need to implement the requirements defect, once you identify issues that are caused by poor requirements it will shine the white hot light of shame onto the resources that are capturing your requirements.  Once you realize how many requirements defects exist in your system you can begin to inform senior management about the requirements problem.

Reducing Fire-Fighting

Fire fightingThe best way to reduce fire fighting is to start writing better requirements (or writing requirements 🙂 ).  To do so you need to figure out which of the following are broken:

  1. Not enough time is allocated to the requirements phase
  2. Unskilled people are capturing your requirements

In all likelihood both of these issues need to be fixed in your organization.  When requirements are incomplete and inconsistent you will have endless fire-fighting meetings involving everyone (see Root cause of ‘Fire-Fighting’ in Software Projects)

Stand your ground if someone tells you that you have coded a defect when there is no documentation for the requirement.

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Size Matters

Some say that software development is challenging because of complexity. This might be true, but this definition does not help us find solutions to reduce complexity. We need a better way to explain complexity to non-technical people.

The reality is that when coding a project size matters.  Size is measured in the number of pathways through a code base, not by the number of lines of code. Size is proportional to the number of function points in a project.

There are many IT people that succeed with programs of a certain size and then fail miserably when taking on programs that are more sophisticated.  Complexity increases with size because the number of pathways increase exponentially in large programs.

Virtually anyone (even CEOs 🙂 ) can build a hello, world! application; an application that only has a single pathway through it and is as simple as you can get.  Some CEOs write the simple hello, world! program and incorrectly convince themselves that development is easy. Hello, world! only has a single pathway through it and virtually anyone can write it.

main() {
printf( “hello, world” );

If you have an executive that can’t even complete hello,world then you should take away his computer 🙂

CallTreeComplexity Defined

As programs get more sophisticated, the number of decisions that have to be made increase and the depth of the call tree increases.  Every non-trivial routine will have multiple pathways through it.

If your average call depth is 10 with an average of 4 pathways through each routine then this represents over 1 million pathways.  If the average call depth is 15 then it represents 107 million pathways.

Increasing sophisticated programs have greater call depth than ever and distributed applications increase the call depth even because the call depth of a system is additive. This is what we mean by complexity; it is impossible for us to test all of the different pathways in a black box fashion.

Now in reality every combination of pathways is not possible, but you only have to leave holes in a few routines and you will have hundreds, if not thousands, of pathways where calculations and decisions can go wrong.

In addition, incorrect calculations or decisions higher up in the call tree can lead to difficult to find defects that may blow up much further away from the source of the problem.

What are Defects?

Software defects occur for very simple reasons, an incorrect calculation is performed that causes an output value to be incorrect.  Sometimes there is no calculation at all because input data is not validated to be consistent and that data is either stored incorrectly or goes on to cause incorrect calculations to be performed.

Call Tree and Defects, discoveredWe only recognize that we have a defect when we see an output value and recognize that it is incorrect. More likely QA sees it and tells us that we are incorrect.

Basically we follow a pathway that is correct through nodes 1, 2, 3, 4, and 5.  At point 6 we make a miscalculation calculation, and then we have the incorrect values at points 7 and 8 and discover the problem at node 9.

So once we have a miscalculation, we will either continue to make incorrect calculations or make incorrect decisions and go down the wrong pathways (where we will then make incorrect calculations).

Not all Defects are Equal

It is clear that the more distance there is between a miscalculation and its discover will make defects harder to detect.  The longer the call depth the greater the chance that there can be a large distance between the origin and detection, in other words:

Size Matters

Today we build sophisticated systems of many cooperating applications and the call depth is exponential with the size of the system.  This is what we mean by complexity in software.

Reducing Complexity

Complexity is reduced for every function where:

  • You can identify when inconsistent parameters are passed to a function
  • All calculations inside of a function are done correctly
  • All decisions through the code are taken correctly

The best way to solve all 3 issues is through formal  planning and development.Two methodologies that focus directly on planning at the personal and team level are the Personal Software Process (PSP) and the Team Software Process (TSP) invented by Watts Humphrey.

Identifying inconsistent parameters is easiest when you use Design By Contract (DbC) , a technique that was pioneered by the Eiffel programming language. It is important to use DbC on all functions that are in the core pathways of an application.

Using Test Driven Development is a sure way to make sure that all calculations inside of a function are done correctly, but only if you write tests for every pathway through a function.

Making sure that all calculations are done correctly inside a function and that correct decisions are make through the code is best done through through code inspections (see Inspections are not Optional and Software Professionals do Inspections).

All techniques that can be used to reduce complexity and prove the correctness of your program are covered in Debuggers are for Losers.  N.B. Debuggers as the only formalism will only work well for systems with low call depth and low branching.


Therefore, complexity in software development is about making sure that all the code pathways are accounted for.  In increasingly sophisticated software systems the number of code pathways increases exponentially with the call depth. Using formal methods is the only way to account for all the pathways in a sophisticated program; otherwise the number of defects will multiply exponentially and cause your project to fail.

Only projects with low complexity (i.e. small call depth) can afford to be informal and only use debuggers to get control of the system pathways. As a system gets larger only the use of formal mechanisms can reduce complexity and develop sophisticated systems. Those formal mechanisms include:

  • Personal Software Process and Team Software Process
  • Design by Contract (via Aspect Oriented Programming)
  • Test Driven Development
  • Code and Design Inspections
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Defects are for Losers

A developer is responsible for using any and all techniques to make sure that he produces defect free code.  The average developer does not take advantage of all of the following opportunities to prevent and eliminate defects:

  1. Before the code is written
  2. As the code is written
  3. Writing mechanisms for early detection
  4. Before the code is executed
  5. After the code is tested

The technique that is used most often is #5 above and will not be covered here.  It involves the following:

  1. Code is delivered to the test department
  2. The test department identifies defects and notifies development
  3. Developer’s fire up the debugger and try to chase down the defect

Like the ‘rinse and repeat‘ process on a shampoo bottle, this process is repeated until the code is cleaned or until you run out of time and are forced to deliver.

The almost ubiquitous use of #5 leads to CIOs and VPs of Engineering assuming that the metric of one tester to two developers is a good thing.  Before assuming that #5 is ‘the way to go‘ consider the other techniques and statistical evidence of their effectiveness.

Before the Code is Written

A developer has the most options available to him before the code is written.  The developer has an opportunity to plan his code, however, there are many developers who just ‘start coding’ on the assumption that they can fix it later.

How much of an effect can planning have?  Two methodologies that focus directly on planning at the personal and team level are the Personal Software Process (PSP) and the Team Software Process (TSP) invented by Watts Humphrey.

PSP can raise productivity by 21.2% and quality by 31.2%

TSP can raise productivity by 20.9% and quality by 30.9%

Not only does the PSP focus on code planning, it also makes developers aware of how many defects they actually create.  Here are two graphs that show the same group of developers and their defect injection rates before and after PSP training.

Before PSP training After PSP training

The other planning techniques are:

  • Decision tables
  • Proper use of exceptions

Both are covered in the article Debuggers are for Losers and will not be covered here.

As the Code is Written

Many developers today use advanced IDEs to avoid common syntax errors from occurring   If you can not use such an IDE or the IDE does not provide that service then some of the techniques in the PSP can be used to track your injection of syntax errors and reduce those errors.

Pair Programming

One technique that can be used while code is being written is Pair Programming.  Pair programming is heavily used in eXtreme Programing (XP).  Pair programming not only allows code to be reviewed by a peer right away but also makes sure that there are two people who understand the code pathways through any section of code.

Pair programming is not cost effective overall (see Capers Jones).  For example, it makes little sense to pair program code that is mainly boiler plate, i.e. getter and setter classes. What does make sense is that during code planning it will become clear which routines are more involved and which ones are not.  If the cyclomatic complexity of a routine is high (>15) then it makes sense for pair programming to be used.

If used for all development, Pair Programming can raise productivity by 2.7% and quality by 4.5%

Test Driven Development

Test driven development (TDD) is advocated by Kent Beck and stated in 2003 that TDD encourages simple designs and inspires confidence.  TDD fits into the category of automated unit testing.

Automated unit testing  can raise productivity by 16.5% and quality by 23.7%

Writing Mechanisms for Early Detection

Defects are caused by programs either computing wrong values, going down the wrong pathway, or both.  The nature of defects is that they tend to cascade and get bigger the further in time and space between the source of the defect and the noticeable effects of the defect.

Design By Contract

One way to build checkpoints into code is to use Design By Contract (DbC), a technique that was pioneered by the Eiffel programming language   It would be tedious and overkill to use DbC in every routine in a program, however, there are key points in every software program that get used very frequently.

Just like the roads that we use have highways, secondary roads, and tertiary roads — DbC can be used on those highways and secondary roads to catch incorrect conditions and stop defects from being detected far away from the source of the problem.

Clearly very few of us program in Eiffel.  If you have access to Aspect Oriented Programming (AOP) then you can implement DbC via AOP. Today there are AOP implementations as a language extension or as a library for many current languages (Java, .NET, C++, PHP, Perl, Python, Ruby, etc).

Before the Code is Executed

Static Analysis

Most programming languages out there lend themselves to static analysis.  There are cost effective static analysis for virtually every language.

Automated static analysis can raise productivity by 20.9% and quality by 30.9%


Of all the techniques mentioned above, the most potent pre-debugger technique is inspections. inspections are not sexy and they are very low tech, but the result of organizations that do software inspections borders on miraculous.The power of software inspections can be seen in these two articles:

Code inspections can raise productivity by 20.8% and quality by 30.8%

Design inspections can raise productivity by 16.9% and quality by 24.7%

From the Software Inspections book on p.22.

In one large IBM project, one half million lines of networked operating system, there were 11 development stages (document types: logic, test, user documentation) being Inspected.  The normal expectation at IBM, at that time, was that they would be happy only to experience about 800 defects in trial site operation.  They did in fact experience only 8 field trial defects.

Evidence suggests that every 1 hour of code inspection will reduce testing time by 4 hours


Overworked developers rarely have time to do research, even though it is clear that there is a wealth of information available on how to prevent and eliminate defects. The bottom line is that if your are only using technique #5 from the initial list, then you are not using every technique available to you to go after defects.My opinion only, but:

A professional software developer uses every technique at his disposal to prevent and eliminate defects

Other articles in the “Loser” series

Want to see more sacred cows get tipped? Check out:

Make no mistake, I am the biggest “Loser” of them all.  I believe that I have made every mistake in the book at least once 🙂


Gilb, Tom and Graham, Dorothy. Software Inspections


Radice, Ronald A. High Quality Low Cost Software Inspections.

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Why Adding Personnel to a late Software Project delays it more

The blog entry on Root Causes of ‘Fire-Fighting’ explains how poor requirements and insufficient team synchronization mechanisms can lead to constant fire-fighting. When faced with constant fire-fighting your project starts spinning out of control and code development will slow to a crawl. At this time, management’s first instinct is to throw more developers at the problem.

While adding resources to a late project seems like a logical thing to do, it generally makes the problem worse, i.e. leads to more fire fighting and reduced productivity. While it seems counter-intuitive, actually throwing people off the project is more likely to make your project move faster.  Fred Brooks, author of The Mythical Man-Month calls this principle Brook’s law.

Different Types of Team Activity

Before addressing why adding resources slow down late projects,  let’s look at the different types of team activities and their inherent productivity characteristics. When teams of people perform tasks they fall into one of three different categories: 1) additive, 2) disjunctive, and 3) conjunctive.

In an additive activity, the productivity of the group is determined by adding up the productivity of each of the individuals comprising the team, i.e. team productivity = Σ (individual productivity) . One additive activity is tug-of-war where the productive output of your team is equal to the sum of the pulling force of all the members of your team. Another additive activity would be a team of people painting a house.

Managers throw additional people into late projects on the assumption that coding is an additive activity, it isn’t; we’ll cover why in a second.

In a disjunctive activity, the productivity of the group is determined by the strongest member of the team, i.e. team productivity = max(individual1, individual2, …, individualn). A disjunctive activity would be playing Trivial Pursuit in large teams, if team gets the answer right when any team member gets it right.  In software projects disjunctive activities occur when there is a very specific technical problem to solve. In the meeting, whoever solves the problem first will solve it for the entire team.

In a conjunctive activity, the productivity of the group is determined by the weakest member of the team, i.e. team productivity = min(individual1, individual2, …, individualn). Conjunctive activities are equivalent to the weakest link in a chain. Security is a conjunctive activity, you are only as secure as the weakest part of your security architecture. Quality is a conjunctive activity and this is why we say “quality is everyone’s job“. It only takes one poor quality component to reduce the quality of an entire product.

When an organization is unaware of critical conjunctive activities, they are likely to have all kinds of execution problems.

Understanding Requirements is a Conjunctive Activity

Software projects get into a fire fighting mode because there is a poor understanding of the requirements from a team perspective. Whether the requirements were well written or not, if those requirements are poorly understood by the team then you start playing 6 blind men and the elephant.

This is where you discover that everyone in your project has a different perspective on what the system is supposed to do and how it is supposed to do it. The fire-fighting mode is nothing more than a set of meetings to resolve differences and solve problems caused by divergent beliefs on the project.

Understanding the requirements is a conjunctive activity. Your productivity is only as good as the weakest understanding in the team. The developer on the team with the weakest understanding of the requirements is probably generating the most defects. If QA does not understand the requirements (if they exist) then they will be generating all kinds of false positives when they are unsure the software is behaving properly.

With this perspective, it is easy to see how adding people to a late project will cause it to be later. The additional developers and QA being added to the project will have the poorest understanding of the requirements of all the team members. This means that they will almost certainly generate more defects in development and cause even more false positives in QA. This will increase the amount of fire-fighting that you do and cause the project to slow down even more.

Solution: Throw People off the Ship

Walk the plank

So as counter-intuitive as it sounds, you need to throw people off the ship. Find the developers and QA personnel who don’t understand the requirements and remove them from the project. These are the guys creating much of the noise in the fire-fighting meetings.

Otherwise get these people together with the business analysts and educate them about what the software is supposed to do and how it is supposed to be done. If you are going to add personnel to the team then this becomes an ideal time to get them educated on the requirements BEFORE they start producing or testing code.

While they are not working directly on the project have them put together the centralized requirements repository suggested in the last blog.  If they become sufficiently familiar with the requirements then you can add them back to the software team.

Additional resource: The Mythical Man Month, by Fred Brooks

VN:F [1.9.22_1171]
Rating: 4.0/5 (2 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)