Not using UML on Projects is Fatal

UMLThe Unified Modeling Language (UML) was adopted as a standard by the OMG in 1997, almost 20 years ago.  But despite its longevity, I’m continually surprised at few organizations actually use it.

Code is the ultimate model for software, but it is like the trees of a forest.  You can see a couple, but only few people can see the entire forest by just looking at the code.  For the rest of us, diagrams are the way to see the forest, and UML is the standard for diagrams.

They say, “A picture is worth a thousand words“, and this is true for code; even on a large monitor you can only see so many lines of code.  Every other engineering discipline has diagrams for complex systems, e.g. design diagrams for airplanes, blueprints for buildings.  In fact, the diagrams need to be created and approved  BEFORE the airplane or building is created.

Contrast that with software where UML diagrams are rarely produced, or if they are produced, they are produced as an after thought.  The irony is that the people pushing to build the architecture quickly say that there is no time to make diagrams, but they are the first people to complain when the architecture sucks.  UML is key to planning (see Not planning is for losers)

I think this happens because developers, like all people, are focused on what they can see and touch right now.  It is easier to try to code a GUI interaction or tackle database update problems than it is to work at an abstract level through the interactions that are taking place from GUI to database.

Yet this is where all the architecture is.  Good architecture makes all the difference in medium and large systems.  Architecture is the glue that holds the software components in place and defines communication through the structure.  If you don’t plan the layers and modules of the system then you will continually be making compromises later on.

In particular, medium to large projects (>10,000 function points) are at a very high risk of failure if you don’t consider the architectural issues.  Considering only 3 out of 10 software projects are successful only a fool would skip planning the architecture (see Failed? You get what you deserve!)

Good diagrams, in particular UML, allow you to abstract away all the low level details of an implementation and let you focus on planning the architecture.  This higher level planning leads to better architecture and therefore better extensibility and maintainability of software.

If you are a good coder then you will make a quantum leap in your ability to tackle large problems by being able to work through abstractions at a higher level.  How often do we find ourselves unable to implement simple features simply because the architecture doesn’t support it?

Well the architecture doesn’t support it because we spend very little time developing the blueprint for the architecture of the system.

UML diagrams need to be produced at two levels:

  • the analysis or ‘what’ level
  • the design or ‘how’ level

Analysis UML diagrams (class, sequence, collaboration) should be produced early in the project and support all the requirements.  Ideally you use a requirements methodology that allows you to trace easily from the requirements onto the diagrams.

Analysis diagrams do not have implementation classes on them, i.e. no vendor specific classes.  The goal is to identify how the high level concepts (user, warehouse, product, etc) relate to each other.

These analysis level UML diagrams will help you to identify gaps in the requirements before moving to design.  This way you can send your BAs and product managers back to collect missing requirements when you identify missing elements before you get too far down the road.

Once the analysis diagrams validate that the requirements are relatively complete and consistent, then you can create design diagrams with the implementation classes.  In general the analysis diagrams are one to many to the design diagrams.

Since you have validated the architecture at the analysis level, you can now do the design level without worrying about compromising the architectural integrity.  Once the design level is complete you can code without compromising the design level.

When well done the analysis UML, design UML, and code are all in sync.  Good software is properly planned and executed from the top down.  It is mentally tougher to create software this way, but the alternative is continuous patches and never ending bug-fix cycles.

So remember the following example from Covey’s The 7 Principles of Highly Effective People:

You enter a clearing where a man is furiously sawing at a large log, but he is not making any progress.  You notice that the saw is dull and is unable to cut the wood, so you say, “Hey, if you sharpen the saw then you will saw the log faster”.  To which the man replies, “I don’t have time, I’m too busy sawing the log”.

Don’t be the guy sawing with a dull

UML is the tool to sharpen the saw, it does take time to learn and apply, but you will save yourself much more time and be much more successful.

Bibliography

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Understanding your chances of having a successful software project

We have been building software systems for over 50 years, and yet success rates remain extremely low, see Dan Galorath for some information.  Different reports put the success rates at different levels but successful projects are rarely higher than 30-40%.

Report Year Successful Challenged Failure
Standish Chaos Reports 2009 32% 44% 24%
Saur & Cuthbertson 2003 16% 74% 10%
Tata Consultancy 2007 38% 62%

It might seem strange, but we don’t all have the same definition of success for software projects.  Success is when a project delivers the expected benefits within 10% of cost and schedule.  For me, a project is NOT successful when:

  • It does not deliver what was promised
  • It has cost or time over runs of over 10%
  • It has its scope dramatically reduced so that victory can be claimed
  • It does not have a positive net present value, i.e. it never breaks even

Under those conditions I’m guessing that there are even fewer successful projects out there.  Let’s make software success extremely concrete.  Imagine that you are on a street corner watching people cross the street to the other street corner.  Imagine that out of every 10 people trying to cross the street only 3 people cross successfully, the other 7 get maimed or killed.

How interested would you be in crossing the street?

Sun Tzu wrote:

War is of vital importance to the state; hence it is a subject of inquiry which can on no account be neglected.

In our modern world, software is of vital importance to your organization.   If you can solve your business issues by building software consistently and reliably you will gain a tremendous advantage over your competition.

One misconception is that software projects fail because “I am surrounded by idiots!   Just because we get frustrated at being unable to get software built does not make this statement true.  In fact, the exact opposite is true, the average IQ of Computer System Analysts is 111.3[1], and any IQ above 110 is considered to be Superior Intelligence[2]. 

Don’t get me wrong; you might have a bunch of developers from the shallow end of the gene pool, but that does not explain how thousands of organizations fail to build quality software.  The point is that software does not fail because there are not enough smart people looking at the problem.

There are plenty of consultants, a.k.a. snake oil salesmen, that are willing to sell you “silver bullet” solutions that will solve your every problem.  Have you ever seen any of these really work?  Each of these solutions will generally solve one aspect of your problem and leave you with a larger one to fix later; they will also leave big holes in your budget. Unfortunately, we often succumb to “silver bullet” solutions because they tell us what we want to hear.

To really fix your software development problems requires better understanding of basic principles; after all, there are software projects that succeed out there.  Not surprisingly, the companies that have figured out how to develop software consistently and reliably tend to have the fewest failures.  Learning how to develop software consistently and reliably requires that you learn how the following 5 elements intersect and affect each other:

  1. Requirements
  2. Project Management
  3. Principles
  4. Developers
  5. Executives

Each of these elements will intersect with all of the others.  You will continually stumble through software development until you get the minimum level of execution and synchronicity between these 5 rings.

Organizations that do not understand these 5 rings will create organizational structures and processes that are doomed to fail.  Poor organizational structure and processes will create systemic problems that will lead to the following problems:

  • Constant fire fighting (blog)
  • Inflexible software (blog)
  • Poor architecture (blog)

Problems from poor organizational structure and processes will lead to failed software projects because of the SYSTEM, not the PEOPLE.  However, people always assume that someone is to blame; they rarely look for problems inside the system.  This will lead to severe morale problems and the loss of competent personnel.

 Fixing your software development is a matter of understanding the principles of good organizational and process design.  Once you understand how to balance the 5 elements you will begin to experience success in building software.

 Appendix: Modern IQ Ranges for Various Occupations

According to modern IQ ranges, computer system analysts have one of the highest intelligence quotients of all professions.


[1] Average IQ by occupation (estimated from wordsum scores), January 22, 2011.  Available from http://anepigone.blogspot.ca/2011/01/average-iq-by-occupation.html

[2] What Different IQ Scores Mean, April 12, 2004.   Available from http://wilderdom.com/intelligence/IQWhatScoresMean.html

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)